
LSTM
COMPUTATIONAL LINGUITICS 

HYopil Shin 
hpshin@snu.ac.kr

mailto:hpshin@snu.ac.kr


What are LSTMs
Sequence Prediction Problems 

different to other types of supervised learning problems 

the sequence imposes an order on the observations that must 
be preserved when training models and making predictions 

Four different types of sequence predictions 

Sequence Prediction 

Sequence Classification 

Sequence Generation 

Sequence-to-Sequence Prediction



Sequence
The Sequence imposes an explicit order on the observations! 

The order is important! 

Sequence Prediction 

Weather Forecasting: given a sequence of observations about the 
weather over time, predict the expected weather tomorrow 

Stock Market Prediction: given a sequence of movements of a 
security over time, predict the next movement of the security 

Product Recommendation: given a sequence of past purchases for a 
customer, predict the next purchase for a customer 



Sequence 
Classification

sequence classification involves predicting a class label for a given input 
sequence 

DNA Sequence Classification: given a DNA sequence of A, C, G and T values, 
predict whether the sequence is for a coding or non-coding region 

Anomaly Detection: given a sequence of observations, predict whether the 
sequence is anomalous or not 

Sentiment Analysis: given a sequence of text such as a review or a tweet, 
predict whether the sentiment of the text is positive or negative 



Sequence 
Generation

Sequence generation involves generating a new output sequence that has the same 
general characteristics as other sequences in the corpus 

Text Generation: given a corpus of text, such as works of Shakespeare, generate 
new sentences or paragraphs of text that read they could have been drawn from 
the corpus 

Handwriting Prediction: given a corpus of handwriting examples, generate 
handwriting for new phrases that has the properties of handwriting in the corpus 

Music Generation: given a corpus of examples of music, generate new musical 
pieces that have the properties of the corpus 

Image Caption Generation: given an image as input, generate a sequence  of 
words that describe image 



Sequence-to-
Sequence Prediction

Sequence-to-sequence prediction involves predicting an output sequence 
given an input sequence 

Multi-step Time Series Forecasting: given a time series of observations, 
predict a sequence of observations for a range of future time steps 

Text Summarization: given a document of text, predict a shorter 
sequence of text that describes the sailing parts of the source documents 

Program Execution: given the textual description program or 
mathematical equation predict the sequence of characters that describes 
the correct output 



Limitations of 
Multilayer Perceptrons

Stateless- MLPs learn a fixed function approximation. Any outputs that are 
conditional on the context of the input sequence must be generalized 
and frozen into the network weights 

Unaware of Temporal Structure- Time steps are modeled as input features, 
meaning that network has no explicit handling or understanding of the 
temporal structure or order between observations 

Messy Scaling- For problems that require modeling multiple parallel input 
sequences the number of input features increases as a factor of the size 
sliding window  without any explicit separation of time steps of series 

Fixed Size Inputs- The size of the sliding window is fixed and must be 
imposed on all inputs to the network 

Fixed Size Outputs- The size of the output is also fixed and any outputs 
that do not conform must be forced



RNN: Revisited



RNN : Revisited



RNN - forward 
Propagation



RNN-
Backpropagation



The Long Short-Term 
Memory Network

Given a standard feedforward MLP network, an RNN can be thought of as the addition of 
loops to the architecture 

The recurrent connections add state or memory to the network and allow it to learn and 
harness the ordered nature of observations within input sequences 

Like RNNs, the LSTMs have recurrent connections so that the state from previous activations 
of the neuron from the previous time step is used as context for formulating an output 

Unlike other RNNs, the LSTM has a unique formulation that allows it to avoid the problems 
that prevent the training and scaling of the other RNNs 

The key historical challenge faced with RNNs is how to train them effectively. 

Experiments show how difficult this was where the weight update procedure resulted in 
weight changes that quickly became so small as to have no effect (vanishing gradient) or so 
large as to result in very large changes or even overflow (exploding gradients) 

LSTMs overcome this challenge by design 

The computational unit of the LSTM network is called memory cell, memory block, or just 
cell for short



The Long Short-Term 
Memory Network

LSTM cells are comprised of weights and gates 

LSTM Weights : A memory cell has weight parameters for input, output, as well as 
internal state 

Input Weights: used to weight input for the current time step 

Output Weights: used to weight the output from the last time step 

Internal State: internal state used in the calculation of the output for this time 
step 

LSTM Gates: These too are weighted functions that further govern the information flow 
in the cell 

Forget Gate: decides what information to discard from the cell 

Input Gate: decides which values from the input to update the memory state 

Output Gate: decides what to output based on input and the memory of the cell 

The forget and input gate are used in the updating of the internal state. The output 
gate is a final limiter on what the cell actually outputs



LSTM



The Long Short-Term 
Memory Network

Three Key benefits of LSTMs 

Overcomes the technical problems of training an RNN, namely vanishing 
and exploding gradients 

Possesses memory to overcome the issues of long-term temporal 
dependency with input sequences 

Process input sequences and output sequences time step by time step, 
allowing variable length inputs and outputs 

Limitations of LSTMs 

Memory: how memory can be abused. 

remembering a single observation over a very long number of input time 
steps is a poor use of LSTMS 

requiring an LSTM model to remember multiple observations will fail



How to Train LSTMs
Backpropagation Training Algorithm 

The mathematical method used to calculate derivatives and an application of the 
derivative chain rule 

The training algorithm for updating network weights to minimize error 

The goal of the back propagation training algorithms is to modify the weights of a neural 
network in order to minimize the error of the network outputs compared to some expected 
output in response to corresponding inputs 

General Backpropagation algorithm 

Present a training input pattern and propagate it through the network to get an output 

Compare the predicted outputs to the expected outputs and calculate the error 

Calculate the derivatives of the error with respect to the network weights 

Adjust the weights to minimize the error 

Repeat



Unrolling Recurrent 
Neural Networks 

A simple conception of 
recurrent neural network is 
a type of neural network 
that takes inputs from 
previous time steps 

RNNs are fit and make 
predictions over many time 
steps. 

As the number of time steps 
increases, the simple diagram 
with a recurrent connection 
begins to lose all meaning



Unfolding the 
Forward Pass

For multiple time steps of input(x(t), x(t+1)
…), internal state(u(t), u(t+1)…), and 
outputs(y(t), y(t+1)…), we can unfold the 
network schematic into a graph without any 
cycles 

The cycle is removed and the output (y(t)) 
and infernal state (u(t)) from the previous 
time step are passed onto the network as 
inputs for processing the next time step 

The network does not change between the 
unfolded time steps. Specifically, the same 
weights are used for each time step and it is 
only the outputs and the internal states that 
differ 

In this way, the whole network are copied 
for each time step in the input sentence



Unfolding the 
forward pass

Each copy of the network may be 
thought of as an additional layer of 
the same forward neural network 

The deeper layers take as input the 
output of the prior layer as we’ll as 
a new input time step 

The layers are in fact all copies of 
the same set of weights and the 
internal state is updated from layer 
to layer, which may be a stretch of 
this oft-used analogy 

RNNs, once unfolded in time, can be 
seen as very deep feedforward 
networks in which all the layers 
share the same weights



LSTM-Forward 
Propagation



LSTM-Back 
Propagation



Unfolding the 
Backward Pass

The idea of network unfolding plays a bigger part in the way recurrent neural 
networks are implemented for the backward pass 

The backpropation of error for a given time step depends on the activation of 
the network at the prior time step 

The backward pass requires the conceptualization of unfolding the network 

Error is propagated back to the first input time step of the sequence so that the 
error gradient can be calculated and the weights fo the network can be updated 

Additional concerns of unfolding the recurrent network graphs: 

Each time step requires a new copy of the network which in turn takes 
more memory, especially for large networks with thousands of millions of 
weights 

The memory requirements of training large recurrent networks can quickly 
balloon as the number of time steps climbs into the hundreds



Backpropagation 
Through Time(BPTT)
BPTT is the application of the Backpropagation training algorithm to RNN 

BPTT works by unrolling all input time steps. Each time step has one input time step, one 
copy of the network, and one output 

Errors are then calculated and accumulated for each time step 

summarize the algorithm as follows: 

Present a sequence of time steps of input and output to the network 

Unroll the network then calculate and accumulate errors across each time step 

Roll-up the network and update weights 

Repeat 

BPTT can be computationally expensive as the number of time steps increases. If input 
sentences are comprised of thousands of time steps, then this will be the number of 
derivatives required for a single weight update 

This can cause weights to vanish or explode and make slow learning and model skill noisy



Truncated Backpropagation 
Through Time(TBPTT)

TBPTT is a modified version of the BPTT training algorithm for recurrent neural network 
where the sequence is processed over the time step at a time and periodically an update 
is performed back for a fixed number of time steps 

The algorithms can be summarized as follows: 

Present a sequence of k1 time steps of input and output pairs to the network 

Unroll the network, then calculate and accumulate errors across k2 time steps 

Roll-up the network and update weights 

Repeat 

TBPTT algorithm requires the consideration of two parameters 

k1: The number of forward-pass time steps between updates. Generally this 
influences how slow or fast training will be, given how often weight updates are 
performed 

k2: The number of time steps to which to apply to BPTT. Generally, it should be large 
enough to capture the temporal structure in the problem for the network to learn



Configuration for 
Truncated BPTT

Following Sutskever’s k1 and k2 parameters, some standard or common notations can 
be adapted.(here n refers to the total number of time steps in the input sentence) 

TBPTT(n, n): Updates are performed at the end of the sequence across all time 
steps in the sequence(e.g. classical BPTT) 

TBPTT(1, n): time steps are processed one at time followed by an update that 
covers all time steps seen so far (e.g. classical TBPTT by Williams and Peng) 

TBPTT(k1, 1): The network likely does not have enough temporal context to learn, 
relying heavily on internal state and inputs 

TBPTT(k1, k2), where k1<k2<n: Multiple updates are performed per sequence which 
can accumulate training 

TBPTT(k1, k2), where k1=k2: A common configuration where a fixed number of 
time steps is used for both forward and backward-pass time steps (e.g. 10s to 100s)  

Canonical TBPTT reported in papers may be considered TBPTT(k1, k2), where k1=k2=k 
and k<=n. K is a single parameter and often claimed that the sequence length of input 
time steps should be limited to 200-400


